



## Supporting Early Decision-Making in the Presence of Uncertainty

#### JENNIFER HORKOFF<sup>1</sup>, RICK SALAY<sup>2</sup>, MARSHA CHECHIK<sup>2</sup>, Alessio Di Sandro<sup>2</sup>

<sup>1</sup>Department of Information Engineering and Computer Science, University of Trento, Italy

horkoff@disi.unitn.it

<sup>2</sup>Department of Computer Science, University of Toronto, Canada {rsalay,chechik,adisandro}@cs.toronto.edu

## Early RE Analysis

□ Who is involved? What do they need? ...

- □ Large space of possible alternative requirements
- □ Example... Meeting Scheduler



Supporting Early Decision Making - RE'14 - Horkoff et al.

## Running Example: Meeting Scheduler





### Early Decision Making (e.g., Horkoff & Yu)





# During RE elicitation, it is common to uncover uncertainties





## **Alternative Designs**





# **Conflicting Stakeholder Opinions**





## **Incomplete Information**





### Uncertainty in Requirements Engineering



Many design alternatives





Incomplete information

Conflicting stakeholder opinions



# Uncertainty about the content of the model.





# **Meeting Scheduler Uncertainty**





#### Early Decision Making with Uncertainty

May not be able to resolve all uncertainties before decisions must be made!

We need methods and tools to support early decisionmaking and trade-off analysis in the presence of uncertainty



#### Our Approach: Goal Model Analysis + MAVO

- To tackle this challenge we make use of existing, established RE Techniques
  - Goal modeling and goal satisfaction analysis (e.g., Horkoff &Yu, 2010, 2102)
  - The MAVO framework for formally capturing and reasoning over model uncertainty (Salay et al., 2012)

- We focus on the design-time uncertainty of the modeler, and not the intrinsic, run-time uncertainty of environment
- Use possibilistic rather than probabilistic uncertainty



















# Capturing Uncertainty with MAVO





## **Background: Concretizations**





# Methodology

**Q1** What are the analysis results given a particular analysis alternative in the goal model, considering model uncertainties?

**Q2** Can viable choices be made over the set of results from Q1?

**Q3** Can viable choices be achieved simultaneously?

**Q4** Given choices, what uncertainty reductions are forced? How can we target elicitation?

**Q5** Are suggested uncertainty reductions reasonable? If not, iterate over the model and backtrack.





# Answering Q1: Determining Labels



# Answering Q1: Determining Labels



# Answering Q1: Determining Labels



## Answering Q2: Making Choices



#### Q3: Checking Simultaneous Achievement



#### Q4: Finding forced Uncertainty Reductions



#### Q4: Finding forced Uncertainty Reductions







# Answering Q3 produces an example concretization







Viable Alternative Found





# Answering Q3 produces an example concretization







## **Apply Changes to Uncertain Model**



## Re-evaluate...



## Re-evaluate...



# **Final Result**





#### Implementation details...



### Formal Background: Goal Model Analysis

 Goal model analysis has been implemented using propositional logic (Giorgini et al.'12, Horkoff & Yu'10, '12)

| Link Type     |                                           | Original Rule                                                                                                                                        |
|---------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dependency    |                                           | $(v \in V) \; v(i_s) \Rightarrow v(i_d)$                                                                                                             |
| Decomposition | id                                        | $(\bigwedge_{j=1}^{n} FS(i_j)) \Rightarrow FS(i_d)$                                                                                                  |
|               |                                           | $(\bigvee_{j=1}^{n} FD(i_j)) \Rightarrow FD(i_d)$                                                                                                    |
|               | $\langle i_1 \rangle \langle i_n \rangle$ | 4                                                                                                                                                    |
| Contribution  | is C id                                   | $(c = Make) \ FS(i_s) \Rightarrow FS(i_d) \checkmark$ $(c = Help) \ FS(i_s) \Rightarrow PS(i_d)$                                                     |
|               |                                           | $ \begin{array}{l} \dots \\ (c = Unk, v \in V) \ v(i_s) \Rightarrow U(i_d) \\ (c \in \{Make, Help \dots\}) \ U(i_s) \Rightarrow U(i_d) \end{array} $ |



**i\* Metamodel** FOL Theory:  $\langle \Sigma, \Phi \rangle$  $\Sigma$  – Signature - Sorts representing entity types (e.g., Actor, Intention, Task) Predicates representing relations (e.g., task decomposes goal)  $\Phi$  – Sentences - i\* well-formedness constraints

**Meeting Scheduler i**<sup>\*</sup> **Model**  $FO(G) = \langle \Sigma \cup \Sigma_G, \Phi \cup \Phi_G \rangle$ 

 $\Sigma_G$  and  $\Phi_G$  are model *G*-specific predicates and constraints

MP



 $\Sigma_{\mathbf{G}}$  has unary predicates MP(Actor), AM(Task)), ..., and binary predicates AMinMP(Task, Actor), ...  $\Phi_{\mathbf{G}}$  contains the following sentences: (*Complete*)  $(\forall x : \text{Actor} \cdot \text{MP}(x) \lor \text{MS}(x) \lor \text{DD}(x) \lor \ldots) \land$  $(\forall y: \mathsf{Task}, x: \mathsf{Actor} \cdot \mathsf{in}(y, x) \Rightarrow (\mathsf{AMinMP}(y, x) \lor \ldots)) \land \ldots$ MP: (*Exists*<sub>MP</sub>)  $\exists x : Actor \cdot MP(x)$  $(Unique_{\mathsf{MP}}) \ \forall x, x' : \mathsf{Actor} \cdot \mathsf{MP}(x) \land \mathsf{MP}(x') \Rightarrow x = x'$  $(Distinct_{\mathsf{MP}-\mathsf{MS}}) \forall x : \mathsf{Actor} \cdot \mathsf{MP}(x) \Rightarrow \neg \mathsf{MS}(x)$  $(Distinct_{\mathsf{MP}-\mathsf{DD}}) \forall x : \mathsf{Actor} \cdot \mathsf{MP}(x) \Rightarrow \neg \mathsf{DD}(x)$  $(Distinct_{\mathsf{MP}-\mathsf{MI}}) \forall x : \mathsf{Actor} \cdot \mathsf{MP}(x) \Rightarrow \neg \mathsf{MI}(x)$ similarly for all other element and relation predicates

**i\* Metamodel** FOL Theory:  $\langle \Sigma, \Phi \rangle$  $\Sigma$  – Signature - Sorts representing entity types (e.g., Actor, Intention, Task) Predicates representing relations (e.g., task decomposes goal)  $\Phi$  – Sentences - i\* well-formedness constraints

**Meeting Scheduler i**<sup>\*</sup> **Model**  $FO(G) = \langle \Sigma \cup \Sigma_G, \Phi \cup \Phi_G \rangle$ 

 $\Sigma_G$  and  $\Phi_G$  are model *G*-specific predicates and constraints

(M) MP



 $\Sigma_{\mathbf{G}}$  has unary predicates MP(Actor), AM(Task)), ..., and binary predicates AMinMP(Task, Actor), ...  $\Phi_{\mathbf{G}}$  contains the following sentences: (*Complete*)  $(\forall x : \text{Actor} \cdot \text{MP}(x) \lor \text{MS}(x) \lor \text{DD}(x) \lor \ldots) \land$  $(\forall y: \mathsf{Task}, x: \mathsf{Actor} \cdot \mathsf{in}(y, x) \Rightarrow (\mathsf{AMinMP}(y, x) \lor \ldots)) \land \ldots$ MP:  $(Exist_{MP}) \exists x : Actor \cdot MP(x)$  $(Unique_{\mathsf{MP}}) \; \forall x, x' : \mathsf{Actor} \cdot \mathsf{MP}(x) \land \mathsf{MP}(x') \Rightarrow x = x'$  $(Distinct_{\mathsf{MP}-\mathsf{MS}}) \forall x : \mathsf{Actor} \cdot \mathsf{MP}(x) \Rightarrow \neg \mathsf{MS}(x)$  $(Distinct_{\mathsf{MP}-\mathsf{DD}}) \forall x : \mathsf{Actor} \cdot \mathsf{MP}(x) \Rightarrow \neg \mathsf{DD}(x)$  $(Distinct_{\mathsf{MP}-\mathsf{MI}}) \forall x : \mathsf{Actor} \cdot \mathsf{MP}(x) \Rightarrow \neg \mathsf{MI}(x)$ similarly for all other element and relation predicates

**i\* Metamodel** FOL Theory:  $\langle \Sigma, \Phi \rangle$  $\Sigma$  – Signature - Sorts representing entity types (e.g., Actor, Intention, Task) Predicates representing relations (e.g., task decomposes goal)  $\Phi$  – Sentences - i\* well-formedness constraints

**Meeting Scheduler i**<sup>\*</sup> **Model**  $FO(G) = \langle \Sigma \cup \Sigma_G, \Phi \cup \Phi_G \rangle$ 

 $\Sigma_G$  and  $\Phi_G$  are model *G*-specific predicates and constraints

(MS) MP



 $\Sigma_{\mathbf{G}}$  has unary predicates MP(Actor), AM(Task)), ..., and binary predicates AMinMP(Task, Actor), ...  $\Phi_{\mathbf{G}}$  contains the following sentences: (*Complete*)  $(\forall x : \text{Actor} \cdot \text{MP}(x) \lor \text{MS}(x) \lor \text{DD}(x) \lor \ldots) \land$  $(\forall y: \mathsf{Task}, x: \mathsf{Actor} \cdot \mathsf{in}(y, x) \Rightarrow (\mathsf{AMinMP}(y, x) \lor \ldots)) \land \ldots$ MP: (Exists<sub>MP</sub>)  $\exists x : Actor \cdot MP(x)$  $(Unique_{\mathsf{MP}}) \forall x, x' \cdot \mathsf{Actor} \cdot \mathsf{MP}(x) \land \mathsf{MP}(x') \Rightarrow x = x'$  $(Distinct_{\mathsf{MP}-\mathsf{MS}}) \forall x : \mathsf{Actor} \cdot \mathsf{MP}(x) \Rightarrow \neg \mathsf{MS}(x)$  $(Distinct_{\mathsf{MP}-\mathsf{DD}}) \forall x : \mathsf{Actor} \cdot \mathsf{MP}(x) \Rightarrow \neg \mathsf{DD}(x)$  $(Distinct_{\mathsf{MP}-\mathsf{MI}}) \forall x : \mathsf{Actor} \cdot \mathsf{MP}(x) \Rightarrow \neg \mathsf{MI}(x)$ similarly for all other element and relation predicates Supporting Early Decision Making - RE'14 - Horkoff et al.

**i\* Metamodel** FOL Theory:  $\langle \Sigma, \Phi \rangle$  $\Sigma$  – Signature - Sorts representing entity types (e.g., Actor, Intention, Task) Predicates representing relations (e.g., task decomposes goal)  $\Phi$  – Sentences - i\* well-formedness constraints

**Meeting Scheduler i**<sup>\*</sup> **Model**  $FO(G) = \langle \Sigma \cup \Sigma_G, \Phi \cup \Phi_G \rangle$ 

 $\Sigma_G$  and  $\Phi_G$  are model *G*-specific predicates and constraints

(MSV) MP



 $\Sigma_{\mathbf{G}}$  has unary predicates MP(Actor), AM(Task)), ..., and binary predicates AMinMP(Task, Actor), ...  $\Phi_{\mathbf{G}}$  contains the following sentences: (*Complete*)  $(\forall x : \text{Actor} \cdot \text{MP}(x) \lor \text{MS}(x) \lor \text{DD}(x) \lor \ldots) \land$  $(\forall y: \mathsf{Task}, x: \mathsf{Actor} \cdot \mathsf{in}(y, x) \Rightarrow (\mathsf{AMinMP}(y, x) \lor \ldots)) \land \ldots$ MP:  $(Exist_{MP}) \exists x : Actor \cdot MP(x)$  $(Unique_{\mathsf{MP}}) \forall x, x' : \mathsf{Actor} \cdot \mathsf{MP}(x) \land \mathsf{MP}(x)$  $(Distinct_{MP-MS}) \forall x : Actor MP(x)$  $(Distinct_{MP-DD}) \forall x : Actor \cdot MP(x) \Rightarrow$  $\neg DD(x)$  $(Distinct_{\mathsf{MP}-\mathsf{MI}})$   $\forall x : \mathsf{Actor} \cdot \mathsf{MP}(x) \Rightarrow \mathsf{MI}(x)$ similarly for all other element and relation predicates

#### GM Analysis with MAVO Uncertainty – Formalization

- □ Add i\* analysis to FO MAVO encoding
  - Extended encoding:

$$FO^{e}(G) = \left( \Sigma \cup \Sigma_{G} \cup \Sigma_{label} \Phi \cup \Phi_{G} \cup \Phi_{l} \cup \Phi_{l} \right)$$

Language- Instance-

specific (i\*) model specific

Analysis Labels 🗸 Initial Analysis Labels

Propagation **Constraints** 

• Example  $\Sigma_{label}$  :

FS(i)

Example  $\Phi_l$  constraint:  $\forall i : \mathsf{Intention} \cdot \mathsf{OWOM}(i) \Rightarrow \mathsf{FS}(i)$ • Example  $\Phi_p$  constraint:

 $\forall t : \mathsf{Task}, g : \mathsf{Goal} \cdot (\mathsf{Make}(t,g) \land \mathsf{FS}(t)) \Rightarrow \mathsf{FS}(g)$ 

- Goal model analysis with MAVO, basic idea: assign an analysis label to an intention if there exists a concretization such that the intention has that label
- E.g., there is at least one concretization where PiM has a label, at least one where it has a label, and at least one where it has a label



 $\Phi \cup \Phi_G \cup \Phi_l \cup \Phi_p \land (\exists i : Intention \cdot PiM(i) \land FS(i))$ 



#### Q3: Checking Simultaneous Achievement

Add choices to the formalism as constraints and check for satisfiability:

 $\Phi \cup \Phi_G \cup \Phi_l \cup \Phi_p \wedge \Phi_c$ 

• Where  $\Phi_c$  is the encoding of the user's choices, for example:

 $\begin{array}{lll} \forall i : \mathsf{Intention} \cdot \mathsf{OM}(i) & \Rightarrow & \mathsf{U}(i) \\ \forall i : \mathsf{Intention} \cdot \mathsf{PiM}(i) & \Rightarrow & \mathsf{FS}(i) \end{array}$ 



□ Answering Q4: Use method from Salay et al., FASE'13



## Experience

- Implemented the automated parts of our method (Q1, Q3, Q4) in the Model Management Tool Framework (MMTF)
  - Encoded FO representation and passed it to an SMT solver (z<sub>3</sub>)
- Running times for Q1, 3 and 4 on Meeting Scheduler model ranged from 0.18 to 20.72 seconds
- Applied to method to two larger cases
  - Inflo study (described briefly in study, available online)
  - Smart Grid Study (current work)



# **Conclusions and Future Work**

- Provided a method to support decision making in early RE with the presence of uncertainty
- Used existing RE approaches: goal model analysis + MAVO
- Provided methodology, showing how to answer 5 analysis questions (Q1-5)
- Provided examples + tooling
- □ Future work:
  - Improve usability of MAVO labels + analysis labels
  - Extend method and implementation to support "backward" analysis
  - More examples and validation



# Thank you!

- Questions?
- Contact:
- horkoff@disi.unitn.it
- www.disi.unitn.it/~horkoff (www.cs.utoronto.ca/~jenhork)

