

Evaluating the Business Value of IT Case study on Game Management System

Töhönen, Kauppinen & Männistö

22nd IEEE International Requirements Engineering Conference 2014

29.8.2014

In a nutshell

- How to handle the complexity of evaluating IT's impacts on business value
 - Exploring **system dynamics** methods for tackling the issue
 - Action research, a case with service provider and its customer \Rightarrow Initial Proof-of-concept
- Means for understanding the value, to be used for many kind of decisions... pushing the 'sharp point' [A.Finkelstein RE'14]
 - BUT NOT introducing concrete methods for linking value insights with RE practices

Outline

- Motivation and goals
- Background
 - Challenges with IT business value
 - Systems thinking and System dynamics
- Research desing
 - Action research
 - Case description
- Phases and outputs
- Results and implications
- Conclusions

Motivation and goals

- IT business value needed for decision making
 - Investments, focusing development, improving IT and business alignment
- Challenges of evaluation: mesh of impacts, different viewpoints and value realisation over time => complexity

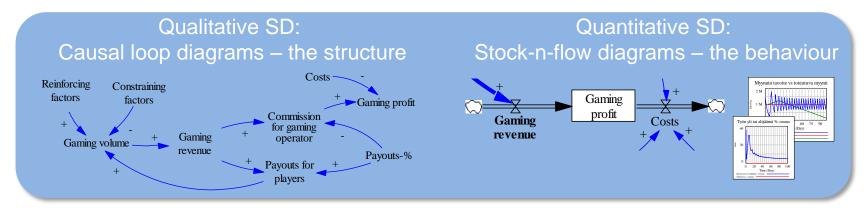
Terms • IT business value = contributions of IT to company performance Contributions = impacts, both benefits and sacrifices

- Goal: seeing the IT as a part of business system and analysing this system
 - How IT impacts on value system structure
 - How much and When value is realised system behaviour

Research question How System Dynamics (SD) can be used in evaluating IT business value

Challenges* in evaluating IT value

Indirectness	Links between IT immediate impacts and observed benefits/costs are not straightforward	
Delays and dynamics	Benefits and costs are realised over varying periods of time, and value realisation is not static	
Complementarity	IT is not used in a vacuum, the usage is affected by surrounding factors e.g. processes, skills and organisational changes	
Intangibility	Benefits and costs can be complicated to identify and quantify	
Measures and units	Measures for benefits and costs are not comparable, single financial measures are insufficient	

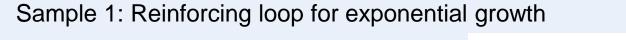

 \Rightarrow Costs and benefits are separated by time and structure

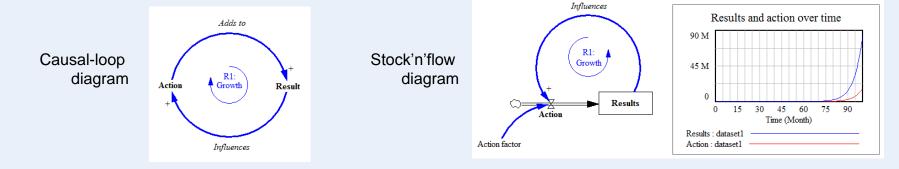
* Please, check the article for detailed literature references

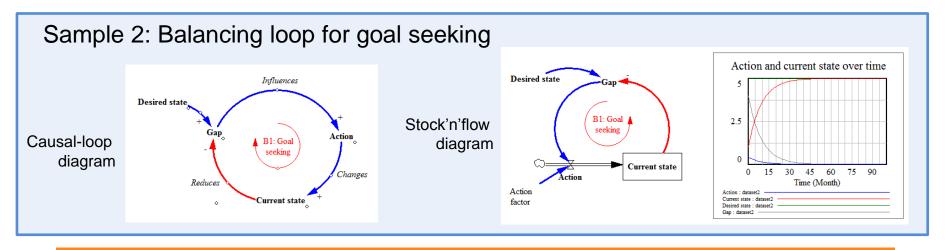
System dynamics (SD)

- Background: systems thinking for holistic approach
 - The system is more than the sum of its elements
 - Structure of elements and interconnections create a dynamic behaviour
 - "...seeing patterns of change rather than snapshots" [Senge, 1990]
- System dynamics (SD) as a tool for opening the 'black box' of IT: seeing both structural and behavioral aspects

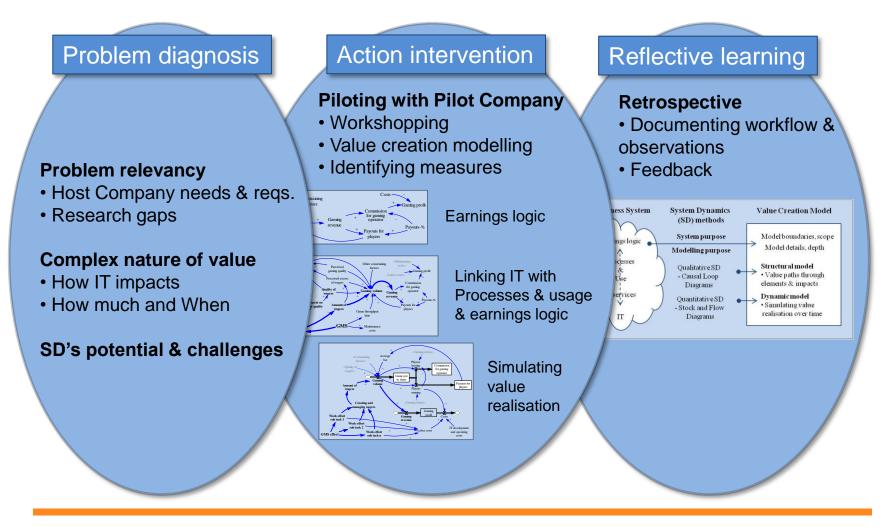
P. Senge, "The fifth discipline: The art & practice of the learning organization," Doubleday/Currency, 1990.


6

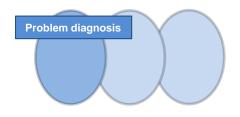

Aalto University School of Science


Two examples with CLDs & SFDs

Focus on feedbacks!

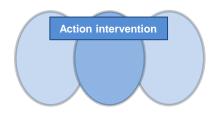


Research design


- Case study with QA service provider (Host Company) and Finnish national betting agency (Pilot Company)
 - Modelling the value creation of Game Management System (GMS)
 - Defining measures for GMS's value creation
- Action research: 1.3.–31.12.2013
 - Host team: 2 participating and 2 steering group members
 - Pilot team: 5 members from different GMS stakeholder roles
 - Piloting period of 4 months
 - Researcher participating within host team: pilot planning, execution and retrospective activities

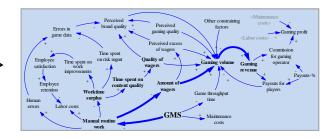
Phase	Description	Context & methods
Problem Diagnosis	Analysing current situation and defining the problem	 Interviews Prototyping Literature reviews
Action Intervention	Planning improvement actions and implementing the planned actions	• Workshops • Modelling • Iterations
Reflective Learning	Analysing the effects of the improvement actions and identifying learnings	•Interviews •Pilot retrospective •Literature reviews

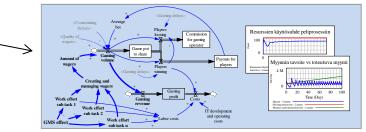
Phases and outputs - overview



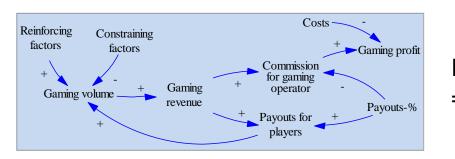
Problem diagnosis

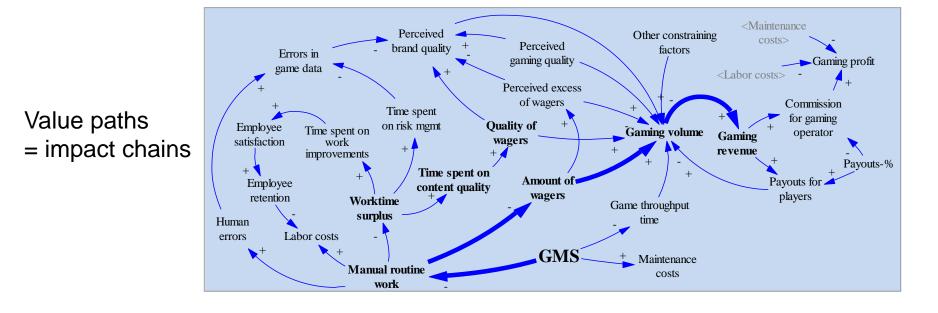
- Analysing problem relevancy: for practice & research
 - Host Company interviews: complexity as a problem, need for estimating IT realised value and success, shortage of methods
 - Host Company requirements for IT value measuring solutions
 - Methodical, support for communication & learning, tool support
 - Narrow existing empirical research base for utilising SD with IT business value evaluation
- Analysing challenges of IT value evaluation
 - relating benefits and costs: IT impacts on benefits and costs are often separated by time and structure
- Analyzing SD's potential for matching the complexity issues with value
 - Qualitative SD: elaborate value creation elements and their connections
 => the structure: *How IT impacts on value creation*
 - Quantitative SD: elaborate dynamic value realisation over time
 => the behaviour: *How much* and *When* value is realised


Action intervention



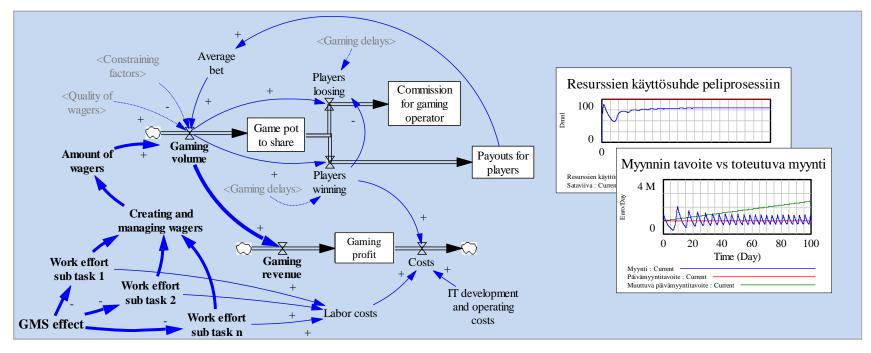
- Modelling value creation of Pilot Company's Game Management System (GMS)
 - Three workshops and modelling iterations
- Earnings logic as a starting point


 Reference points for the business system's
- 2) Elements implementing the earnings logic,
 - including IT/IT services
 - Structural value creation model
 - Value paths: IT impact chains in model
- 3) Behaviour with delays, accumulations and quantified relationships
 - Dynamic value creation model
 - Simulating value realisation
- Identifying measures for monitoring value creation

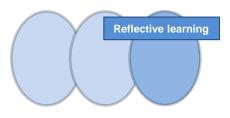


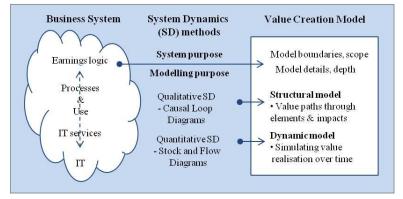
Sample models 1/2

Earnings logic = the purpose for the system


Backup slide

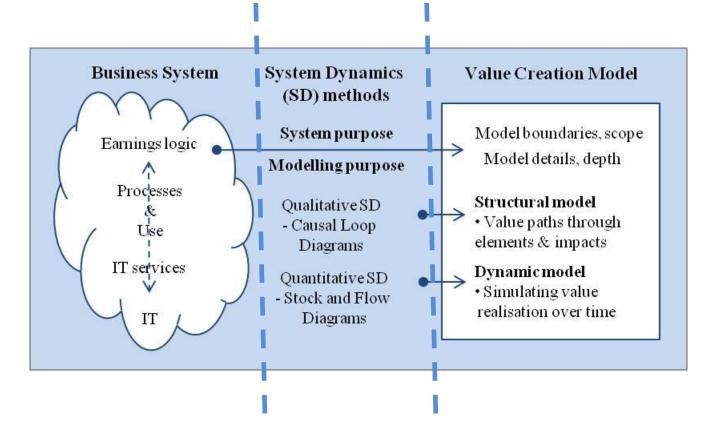
Sample models 2/2




Dynamics and simulation = how much and when

Reflective learning

- The framework for utilising SD for IT business value evaluation
- Structural value creation model: common language for technology and business
 - Visual aspects, value paths
- **Dynamic value creation model**: pushing for tangibility, identifying leverage points
 - Requires extra work, skills and data => gradual deepening on needs basis

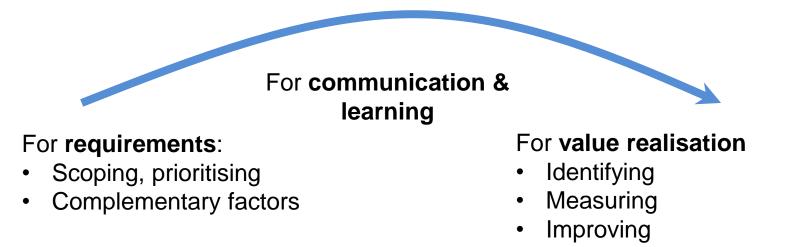


- Importance of purposes: a) system's purpose, and b) models' usage purpose
 - System's purpose sets stakeholders and highest order valuing baselines
 - Model's usage purpose affects required modelling details and balancing of structural and dynamic modelling
 - The process of modelling itself promotes knowledge sharing and group learning

The framework

Results and implications

- **Q:** "How system dynamics (SD) can be used in evaluating IT business value?"
- **A:** SD provides methods for value creation modelling:
 - 1) Modelling the elements and their interconnections: **how** IT impacts value creation,


and

2) Modelling the dynamic value realisation: how much and when value is realised Value creation modelling should find value paths connecting IT/IT services with usage and processes executing company's earnings logic

- Managerial implications
 - Opening up IT 'black box' => communication tool, complementary factors, enriching traditional financial measures
 - Lifecycle view => business system requirements, prototyping and testing value realisation, promoting continous value management
- Research implications
 - Replicating case studies explicitly answering "How well it works"
 - Why SD is not more common with IT value evaluation: embedded in existing practices or some other reasons?
 - Comparing with selected practices, top-down and bottom-up directions
 - Value creation modelling vs. IT governance & management practices?
 - Value creation modelling vs. value practices in IT/SW development and long term planning?

Conclusions

Value creation modelling with SD: a potential tool for promoting value management over the **lifecycle of IT**:

