Hidden in Plain Sight:

Automatically Identifying Security Requirements from Natural Language Artifacts

Maria Riaz, Jason King, John Slankas, Laurie Williams

Aug 28th, 2014

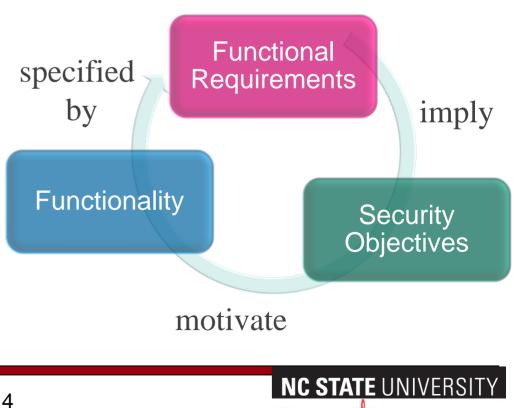
Agenda

- Motivation
- Research Goal
- Related Work
- Security Discoverer (SD) Process
- Security Requirements Templates
- Evaluation of SD Process
- Contributions

Motivation

Cert Research Report, 2010

- Security requirement among the lower 50% of prioritized requirements
- Difficult and expensive to improve security of an application once it is in operational environment


Building security in [McGraw06]

• Need to improve the quantity and quality of security requirements identified early on.

Motivation

- Natural language requirements artifacts often *explicitly* state some security requirements.
- Additional sentences may have security *implications*, leading to additional requirements.

>> Re^ssearch Group Software Engineering @ NCSU

Research Goal

To aid requirements engineers in producing a more **comprehensive** and **classified set of security requirements** by:

- 1) automatically *identifying security-relevant sentences* in natural language requirements artifacts, and
- 2) providing *context-specific security requirements templates* to help translate the security-relevant sentences into functional security requirements.

Overview

• Input: Natural language requirements artifacts (requirements specification, use case scenarios, user stories)

"HCPs can return to an office visit and modify or delete the fields of the office visit."

6

• Output: Security requirements for the system inferred from securityrelevant sentences in the input

[ID & Authentication] Each user should be assigned a unique identifier that can be used for the purpose of authentication.

[Confidentiality] The system shall enforce access privileges that enable HCP to modify or delete office visit.

[Integrity] The system shall ensure that deletion of office visit is performed in accordance with the retention policy.

[Accountability] The system shall log every time HCP modifies or deletes office visit.

[Privacy] The system shall allow the owner of office visit to be notified when the office visit is modified or deleted by HCP.

Related Work

Identifying security requirements:

- Security requirements engineering [Square05]
 - Process for identifying security requirements
- Reusable security requirements and patterns [Toval02, Firesmith04, Schumacher06, Withall07]
 - Parameterized security requirements
 - Patterns for some aspects of access control and audit
- Organizational learning approach to security [Schneider12]
 - Reusing explicitly stated security requirements

Related Work

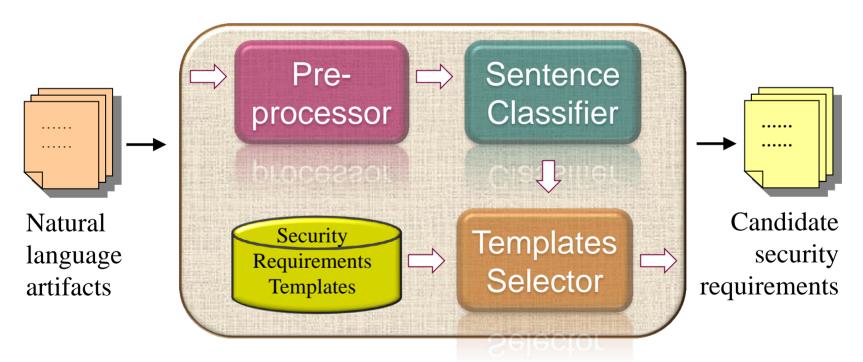
Natural language requirements classification:

• Automated classification of non-functional requirements [Cleland-Huang07]

➤ Use of indicator terms; recall (81%); precision (12%);

• Automated extraction of non-functional requirements in available documentation [Slankas13-Nat]

Multiple algorithms; recall (54%); precision (73%);


- Access control policy extraction from unconstrained natural language text [Slankas13-Pass]
 - Sentence structure matching (k-NN classifier); Otherwise majority vote (naïve Bayes and SVM classifiers); recall (91%); precision (87%);

Security Discoverer (SD) Process

- **1-Parse** Natural Language Requirements Artifacts
- 2-Identify Security-Relevant Sentences
- 3-Suggest Security Requirements Templates

4-Instantiate Selected Templates5-Generate Security RequirementsDocument

Identify and parse individual sentences in natural language requirements artifacts

Parts of speech tags: can be used to instantiate templates or even group requirements by actors / resources / actions.

Example Sentence

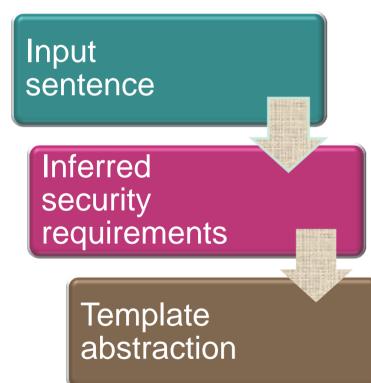
"The <u>system</u> shall *provide* the <u>ability</u> to *update* a <u>patient history</u> by *modifying*, *adding* or *removing* <u>items</u> from the <u>patient history</u> as appropriate."

Socurity Objectives for Requirements Classification

Confidentiality	• The degree to which the "data is disclosed only as intended "			
(C)	[Schumacher06]			
Integrity (I)	 "The degree to which a system or component guards against improper modification or destruction of computer programs or data." [FIPS-PUB-199] 			
Availability (A)	"The degree to which a system or component is operational and accessible when required for use." [IEEE]			
Identification & Authentication (IA)	• The need to establish that "a claimed identity is valid " for a user, process or device. [NIST-SP800-33]			
Accountability	• Degree to which actions affecting software assets "can be traced			
(AY)	to the actor responsible for the action" [Schumacher06]			
Privacy	 The degree to which "an actor can understand and control how			
(PR)	their information is used." [RE14]			

Security Objectives for Requirements Classification

Example Sentence


"The system shall provide the ability to update a patient history by modifying, adding or removing items from the patient history as appropriate."

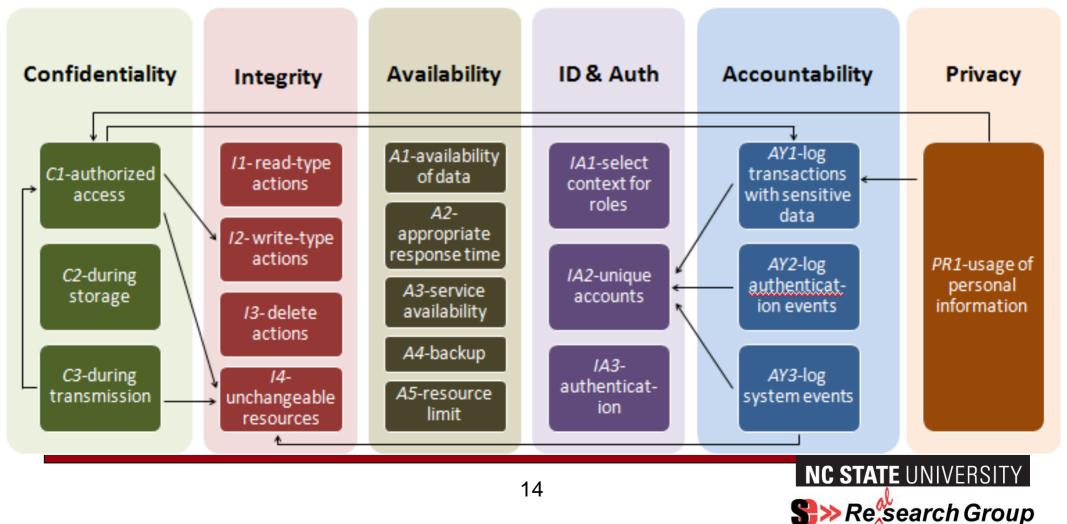
Security Objectives Confidentiality (disclosure) Integrity (access / modification) Accountability (trace actions)

Security Requirements Templates

Identifying common templates for specifying functional security requirements.

An HCP chooses to document an office visit.

The HCP may also add a patient referral.


<u>The system shall allow the</u> <u>owner of office visit to be</u> <u>notified when the</u> office visit <u>is</u> <u>documented</u> by HCP. The system shall allow the owner of patient referral to be notified when the patient referral is added by HCP.

"The system shall allow the owner of <**resource**> to be notified when the <**resource**> is <**action**> by <**subject**>"

Security Requirements Templates

Extracted 19 context-specific security requirements
templates [Empirically derived from security-relevant sentences]

Software Engineering @ NCSU

SD Process Generating Security Requirements from Templates

Example Sentence

"The system shall provide the ability to **update** a **<u>patient history</u>** by **modifying, adding or removing items** from the patient history **as appropriate**."

Generated Security Requirements [Integrity-I2]

- The system shall ensure that all mandatory information is provided for the <<u>patient history</u>> before <<u>modifying</u>, adding or removing items>.
- The system shall have provision to correct errors in <<u>patient</u>
 <u>history</u>> if errors are detected.

[see AY1: Logging transactions with sensitive data]

SD Process Evaluation Study Oracle for Supervised Learning

Sentences

Doc.		#	#	#	#
ID	Document Title	Total	Explicit	Implicit	None
СТ	Certification Commission for Healthcare Information Technology (CCHIT) Certified 2011 Ambulatory EHR Criteria	331	89 (27%)		6 (2%)
ED	Emergency Department Information Systems Functional Document	2328	274 (12%)	1281 (55%)	773 (33%)
NU	Pan-Canadian Nursing EHR Business and Functional Elements Supporting Clinical Practice	264	41 (16%)	127 (48%)	96 (36%)
OR	Open Source Clinical Application Resource (OSCAR) Feature Requests	5081	174 (3%)	1172 (23%)	3735 (74%)
PS	Canada Health Infoway Electronic Health Record (EHR) Privacy and Security Requirements	1623	628 (39%)	67 (4%)	928 (57%)
VL	Virtual Lifetime Electronic Record User Stories	1336	185 (14%)	776 (58%)	375 (28%)
	Total		1391	3659	5913
			(13%)	(33%)	(54%)

https://www.cchit.org/ https://www.infoway-inforoute.ca/ https://www.infoway-inforoute.ca/ http://www.hl7.org/ http://oscarcanada.org/ http://www.va.gov/vler/

16

Software Engineering @ NCSU

SD Process Evaluation Security Objectives in the Study Oracle

Breakdown of security objectives in the oracle:

С	Ι	A	IA	AY	PR	None
27%	30%	~1%	~2%	34%	2%	54%

Frequently occurring groups of security objectives:

# (% sec- relevant)	Objective Groups			
2232 (44%)	Confidentiality, Integrity, Accountability			
702 (14%)	Integrity, Accountability			
443 (9%)	Confidentiality, Accountability			
106 (2%)	Confidentiality, Integrity			
104 (2%)	Confidentiality, Identification & Authentication			

SD Process Evaluation Automatic Classification of Sentences

10-fold cross validation:

- Divide sentences in the oracle into 10 subsamples; Train on 9, test on the 10th, using each subsample once for validation.
- Each sentence used for both training and validation.

Supervised machine learning:

- Naïve Bayes: simple; does not consider sentence structure; needs small training set;
- SMO (*sequential minimal optimization*): train models for recognizing patterns in the input; less complex;
- k-NN classifier: simple; considers sentence structure; improves with larger training set;

SD Process Evaluation Automatic Classification of Sentences

Correctly predicted and classified **82%** of security objectives for all the sentences (*precision*)

18% of the identified objectives an analysts examines would be false positives

Identified **79%** of all objectives implied by sentences within the documents (*recall*)

Classifier	Precision	Recall	F
			Measure
Naïve	.66	.76	.71
Bayes			
SMO	.81	.76	.78
k-NN	.80	.76	.78
(<i>k</i> =1)			
Combined	.82	.79	.80

*▶*21% of the possible objectives not found i.e., *false negatives*

SD Process Evaluation Automatically Suggested Templates

- In a separate user study, we evaluated the use of automatically suggested templates in generating security requirements:
 - Found templates to be helpful in **considering more security objectives** as compared to a control group.
 - *–* Found templates to be helpful in *identifying significantly more security requirements* (2-3 times) as compared to a control group.

Contributions

- Facilitate security requirements engineering
 - Set of context-specific security requirements templates
 - Tool-assisted process for generating requirements
 - Empirical evaluation of tool and process
- A classified set of sentences for the healthcare domain

References

- [Cleland-Huang06] J. Cleland-Huang, R. Settimi, X. Zou, and P. Solc, "Automated Classification of Non-functional Requirements," *Requirements Engineering*, vol. 12, no. 2, pp. 103–120, Mar. 2007.
- [Firesmith04] D. Firesmith, "Specifying Reusable Security Requirements," *Jornal of Object Technology,* vol. 3, p. 15, Jan-Feb. 2004.
- [McGraw06] G. McGraw. "Software Security: Building Security In", Addison Wesley Professional, 2006.
- [Schneider12] Kurt Schneider, Eric Knauss, Siv Houmb, Shareeful Islam, and J. Jürjens, "Enhancing security requirements engineering by organizational learning," *Requirements Engineering,* vol. 17, pp. 35-56, 2012.
- [Schumacher06] M. Schumacher, E. Fernandez-Buglioni, D. Hyberston, F. Buschmann, and P. Sommerlad, Security *Patterns: Integrating Security and Systems Engineering*. West Sussex: John Wiley & Sons, Ltd, 2006.
- [Slankas13-Nat] J. Slankas and L. Williams, "Automated Extraction of Non-functional Requirements in Available Documentation", 1st International Workshop on Natural Language Analysis in Software Engineering (NaturaLiSE 2013), San Francisco, CA.
- [Slankas13-Pass] J. Slankas and L. Williams, "Access Control Policy Extraction from Unconstrained Natural Language Text", 2013 ASE/IEEE International Conference on Privacy, Security, Risk, and Trust (PASSAT 2013), Washington D.C., USA, September 8-14, 2013.
- [Square05] N. R. Mead, E. D. Houg, and T. R. Stehney, "Security Quality Requirements Engineering (SQUARE) Methodology," Software Engineering Inst., Carnegie Mellon University2005.
- [Toval02] A. Toval, J. Nicolar, et al. (2002). "Requirements Reuse for Improving Information Systems Security: A Practitioner's Approach." *Requirements Engineering* 6(4): 15.
- [Withall07] Withall, S. (2007). Software Requirement Patterns, Microsoft Press.

Thank you!

mriaz@ncsu.edu jtking@ncsu.edu jbslanka@ncsu.edu

