
Non-Functional Requirements as
Qualities, with a Spice of Ontology

Feng-Lin Li1, Jennifer Horkoff1, Alexander Borgida2,
Renata Guizzardi3, Giancarlo Guizzardi3, John Mylopoulos1,

Lin Liu4

1 University of Trento, Trento, Italy
2 Rutgers University, New Brunswick, USA

3 Federal University of Espírito Santo (UFES), Vitória, Brazil
4 Tsinghua University, Beijing, China

2014-08-29

RE’14--# 1

Outline

• Motivation

• NFRs as Requirements over Qualities

• A Framework for Goal Models with Qualities

• Evaluation

• Conclusions and Future Work

RE’14--# 2

Non-functional requirements (NFRs)

• No agreement on what they are, e.g.

How well a system performs its functions

Anything that is not functional [Chung09]

Attributes or constraints of a system [Glinz07]

• What about

“software maintainers shall be able to integrate new
functionalities within one work day”

“all updates to databases shall be performed by the
application”

RE’14--# 3

NFRs are often problematic

• Because of their vague, informal nature, e.g.,

(Vague) NFR-1: “The product shall return (file) search
results in an acceptable time.”

(Make-or-break) NFR-2: “Administrator shall be able to
activate a pre-paid card via the Administration section
within 5 sec.”

(Practically unsatisfiable) NFR-3:“The website shall be
available for use 24 hours per day, 365 days per year.”

(Subjective) NFR-4: “The interface shall be appealing to
callers and supervisors.”

RE’14--# 4

Quality according to ontologies

• Unified Foundational Ontology (UFO) [Guizzardi05]

• “A basic perceivable or measurable characteristic that
inheres in and existentially depends on its subject”

• Qualities as mappings

• A quality maps its subjects to values in a quality space

RE’14--# 5

trip#1

Subject domain Quality space (co-domain)

Region
(low)

Quality mapping

1000€Cost#1

Examples (NFR-1): The processing time of file research
shall be acceptable.
QG1:= processing time (file search): acceptable.
QC1:= processing time (file search): ≤ 8 sec.
QC1 is-operationalization-of QG1
QGi := understandability ({the interface}): intuitive

NFRs as requirements over qualities

• An NFR constrains a quality mapping Q to take values in a
region QRG of its quality space for its subject type SubjT

• Model NFRs as Quality Goals (QG)/Constraints (QC)

• QG := Q(SubjT) : QRG

• ∀x. instanceOf (x, SubjT) → subregionOf (Q(x), QRG)

RE’14--# 6

Composite NFRs

• NFRs with qualified subjects

SubjT := SubjT <attribute: filler>*

filler := atomic value | SubjT

RE’14--# 7

Example 2 (NFR-2): Administrator shall be able to activate a

pre-paid card via the Administration section within 5 sec.

activate p-card' :=

 activate pre-paid card <actor: Administrator>

 <means: via the Administration section >.

QG2 := processing time (activate p-card'): within 5 sec.

Meta-qualities

• Many requirements have the form ∀x P(x)

e.g., “For every request a meeting shall be scheduled”

“Every file search will be within 5 sec”

• Quality of fulfillment

Universality (U): degree to which the set of all x satisfies P

Gradability (G): degree to which P holds for each x

Agreement (A): degree to which observers agree that P
holds for each x

RE’14--# 8

Universality as a meta-quality

• Universality

• U : power-set(SubjT) → Percentage

• Input: set of requirement subject instances

• Output: percentage of the instances for which requirement
is fulfilled

 Example 3 (NFR-3): The website shall be available for use at
99.5% of the time units in a year.

 theWebsite' := theWebsite

<at: time units <in-period: a year>>

 QG3 := availability(theWebsite'): 100% //the entire unit

 QG3-1 := U (QG3): 99.5% //99.5% of the units in a year

RE’14--# 9

Gradability as a meta-quality

• Gradability

• G : SubjT | power-set(SubjT) → Degree of Fulfillment

• Input: a singleton requirement (can also be a set of
requirement instances)

• Output: degree of fulfillment on a linear scale [0% , 100%]

QG2:= processing time (activate p-card'): within 5 sec.

QG2-1 := G (QG2): nearly

QG2-2 := G (QG2): 90%

QG1:= processing time (file search): acceptable.

QG1-1:= G (QG1): moderately.

RE’14--# 10

Agreement as a meta-quality

• Agreement

A : (Requirement) SubjT → Ratio

Input: a singleton requirement

Output: a ratio of observers from a given pool who agree
that the requirement is satisfied

QG4:= look ({the interface}): appealing
QG4-1:= A (QG4): 80% of the callers and supervisors

RE’14--# 11

Composing meta-qualities

• Composition
U(G(…)) e.g., “95% of the activations happen approximately

within 5 sec.”

A(G(…)) e.g., “80% of the users agree the website is rather
easy to understand”

G(U/A(…)) e.g., “nearly 90% of activations take 5 sec.,
nearly 80% of the users report the interface is simple

G(U(G(…))) e.g., nearly 90% of activations take nearly 5
sec.).

QG2 := processing time (activate p-card'): within 5 sec.
QG2-1 := G (QG2): nearly
QG2-3 := U (QG2-1): 95%

RE’14--# 12

A framework for goal models with qualities

Meta-model

RE’14--# 13

Goal modelling process with qualities

• Iteratively ask the questions

Is a requirement/goal unambiguous?

Is it (practically) satisfiable?

How do we make it measurable?

• Methodology

Disambiguation

Requirement is ambiguous if it has multiple interpretations

E.g., “interface shall have standard menu buttons for
navigation”

Relaxation

U, G, A

RE’14--# 14

Other refinement types

• Focus – narrow down the subject of a goal

A goal G can be focused into FG or QG

A QG can be focused into QGs

According to the quality hierarchy

According to the subject hierarchy

• Operationalization

Comparison class: the same subject type

• Contribution

Functional elements contribute to quality goals

RE’14--# 15

An example

Refine

Relax

O Operationalization

Functional
Goal

Quality
Goal

Quality
Constraint

TaskR

Rlx

AND-Refine

Goal

G1 := Shall communicate
with the DBMS <location:
on the same computer or

the same network>

R
R

R

QC1 := U
(G1) : ≥ 99%

Rlx

QG1 (success
rate) := U (G1) :

100%

QG2 := U (G1)
: ≥ 99%

O

Connect
DBMS &
interact

O

G0 := The product shall successfully
communicate with the DBMS on the

same computer or network on 100% of
the transactions

RE’14--# 16

QG3 := Usability
(the system) : good

QG4 := Learnability
(the system) : easy

to learn

QG5 := Operability
(the system) :

easy to use

R R

R

…...

QG6 := Learnability
(set up a meeting

<actor: users <type:
new>>) : easy

R
R

R

QG7 := Learnability
(reserve a conference
room <actor: users

<type: new>>) : easy

Rlx

QC2 := U (learning time
(reserve a conference room

<actor: users <type:
new>>) : [5 ~ 7 minutes of

product use]) : ≥ 90%

QG9 := U (QG7)
: ≥ 90%

O

…...

Evaluation

• Case study using the PROMISE requirement set [Menzies12]

15 projects, 625 Requirements, 370 NFRs (11 categories)

• Purpose

Evaluate the need for our framework by classifying NFRs in
the data set

Evaluate the expressiveness of our framework by applying it
to the set of NFRs for a meeting scheduler (from PROMISE)

RE’14--# 17

Results

• Classification of the 370 NFRs: QR:187 (51%), FR/CF+QR:61
(16%), FR and CF that contribute to QR: 21+36 (15%)

NFR Category Count QR
FR/CF

+ QR
FR CF

FR

+CF

Usability 67 47 13+1 5(3) 1(1) 0

Security 66 2 11+3 14(11) 32(32) 4

Operational 62 11 10+2 14 12(3) 6

Performance 54 44 4+1 3(2) 1 1

Look and Feel 38 20 7+2 9(1) 0 0

Availability 21 21 0 0 0 0

Scalability 21 19 0 1 0 1

Maintainability 17 8 5 0 4 0

Legal 13 11 0 2(2) 0 0

Fault tolerance 10 4 2 4(2) 0 0

Portability 1 0 0 0 0 0

Total 370 187 61 52(21) 50(36) 12

QR: quality requirement; FR: functional requirement; CF: constraint over function
RE’14--# 18

More results

• Potential application of relaxation operators

370 NFRs 481 requirements items

Practically unsatisfiable:15% (86/567), vague: 25% (143/
567), measurable: 59% (333/567)

Implicit operator application

U: 50, G: 10, A: 16

Number of requirements that likely need relaxation

U: 86, G: 476, A: 20
Satisfaction Type Count#

Implicit Operator

Application
Count#

Ambiguous 5 Universality (U) 50

Unsatisfiable 86 Gradability (G) 10

Vague 143 Agreement (A) 16

Measurable 333 RE’14--# 19

A small case study

• Meeting Scheduler

47 NFRs: 21 QRs, 9 FRs, 14 FR+QR, 2 CF+QR, and 1 DA

58 QGs from QRs, FR+QR and CF+QR (37 items)

Rewrite the 58 QGs using our syntax

Build goal models using our methodology

The full model: http://goo.gl/AxNjPf

RE’14--# 20

http://goo.gl/AxNjPf

Evaluation conclusions

• Different elements of our framework indeed useful

Quality plays a key role among NFRs in RE practice

Some NFRs are actually CFs

Many NFRs are ambiguous, (practically) unsatisfiable,
vague, and subjective

• Our framework is adequate for covering NFRs in practice

We have tested the expressiveness of our framework
using the meeting scheduling case study

It is able to support the refinement of requirements into
ones that are unambiguous, satisfiable and measurable.

RE’14--# 21

Conclusions and future work

• Conclusions

We adopt an ontological account of NFRs as qualities

Propose three meta-qualities that account for quality of
fulfillment of other requirements

We propose a language for express NFRs

We present a methodology for deriving unambiguous,
satisfiable, and measurable NFR specifications

• Future Work

 Full syntax and semantics of meta-quality operators

 Contribution links between functional and quality goals

 Reasoning with quality goals

RE’14--# 22

References (partial)

1. [Glinz07] M. Glinz, “On non-functional requirements,” RE, 2007.

2. [Chung09] L. Chung, J. do Prado Leite, “On Non-Functional Requirements in Software
Engineering,” in Conceptual Modeling: Foundations and Applications, Springer, 2009, 363–
379.

3. [Guizzardi05] G. Guizzardi, Ontological foundations for structural conceptual models. CTIT,
Centre for Telematics and Information Technology, 2005.

4. [Menzies12] T. Menzies, B. Caglayan, H. Zhimin, K. Ekrem, K. Joe, P. Fayola, and T. Burak,
“The PROMISE Repository of empirical software engineering data,” Jun-2012. [Online].
Available: http://promisedata.googlecode.com.

RE’14--# 23

Acknowledgement

• This research is funded by the ERC advanced grant 267856

"Lucretius: Foundations for Software Evolution", unfolding

during the period of April 2011 - March 2016. It is also

financially supported by the National Natural Science

Foundation of China (No. 61033006).

RE’14--# 24

