RE 2014 08/28/2014

RISDM: A Requirements Inspection Systems Design Methodology Perspective-Based Design of the Pragmatic Quality Model and Question Set to SRS

> Shinobu Saito, Mutsuki Takeuchi (NTT DATA), Setuo Yamada (NTT), and Mikio Aoyama (Nanzan Univ.)

- 1. Background and Research Questions
- 2. Approach
- 3. Design Methodology (RISDM)
- 4. Practice and Evaluation
- **5. Conclusions and Future Works**

About NTT DATA

- □ Our company (NTT DATA) is a global IT solution provider.
- ✓ More than 60,000 engineers specialized in the large-scale software development.
- ✓ The quality of the SRS (Software Requirements Specification) is the key to the success of software development.

Background

SRS is created by the requirements engineering team.

□ Software is developed by different teams (development teams).

- The development teams need to read the SRS and try to understand the customer's requirements correctly.
- To improve the quality of the SRS, review and inspection are commonly used in our company and industry in general.

- Inspection highly require the inspector's skill and knowledge.
- ✓ It is difficult to assure the quality of the requirements inspection.

Necessary to develop a design methodology of requirements inspection method.

Research Questions

We propose RISDM (Requirements Inspection Systems Design Methodology).

- ✓ Define a set of PQC (Pragmatic Quality Characteristic) of the SRS from a specific view points of a SRS reader.
- Develop a reading technique for inspecting an SRS based on the PBR (Perspective Based Reading).

□ We seek to answer the following research questions.

RQ1:Is the PQC designed by the RISDM useful to predict risks of the subsequent development? RQ2:Does the reading technique designed by the RISDM help inspectors to suggest practical advices for SRS improvement?

- Background and Research Questions
 Approach
- 3. Design Methodology (RISDM)
- **4. Practice and Evaluation**
- **5. Conclusions and Future Works**

Inspection Meta-Model

- Inspection meta-model is composed of six technical components: Process, Role, Product, Quality, Reading Technique, and Report.
- Requirements inspection is <u>a system</u> which is a instance of the meta-model.

We call the system RIS (Requirements Inspection System).

RISDM and **RIS**

NTTDATA

□ The RISDM is a methodology to design an RIS from the inspection meta-model.

RISDM and **RIS**

Four components (Product, Quality, Reading Technique, and Report) are designed by the RISDM.

- 1. Background and Research Questions
- 2. Approach
- 3. Design Methodology (RISDM)
- **4. Practice and Evaluation**
- **5. Conclusions and Future Works**

Design Process

□ RISDM defines six processes for designing Product, Quality, Reading Technique, and Report.

Design Process

RISDM defines six processes for designing Product, Quality, Reading Technique, and Report.

Define Reference SRS Structure and Quality Characteristics Define Standard SRS

Select Reference SRS Structure and QC(Quality Characteristics) as a baseline of the RIS.

Define the Standard SRS Structure specific to the organization.

IEEE Std. 830	Chapter	Section			
		1.1. Purpose of SRS			
Ý	1. Introduction	1.2. Intended Reader	Standard SRS		
		1.3. Structure of SRS	Structure		
Reference		1.4. References			
SRS Structure		2.1. Goal of System			
	2. Overview of	2.2. Business and Scope of System			
	System	2.3. Constraints			
		2.4. Terms			
Reference	3. Items Causing Change or Unspecified	3.1. Items Causing Changes			
SRS QCs		3.2. Items Unspecified			
. ↓	1 Eurotional	4.1. Business Flow			
Process 4	4. Functional Requirements	4.2. Functions			
	Requirements	4.3. Data Model Definition			
		5.1. NFR Grade			
	5. Non Functional	5.2. Requirements to System Architecture			
	Requirements	5.3. Requirements to Migration			
		5.4. Requirements to Service Provisioning			

NTTDATA

Product

Design Process

RISDM defines six processes for designing Product, Quality, Reading Technique, and Report.

Architecture /

Architect

		Perspective
	Level 1	Level 2
	Require	Conform to customer's needs
Manage Manage all elements on the		Manage all elements on the progress
ſ	Implement	Design by template
i		Design by standard description
ĺ,		Use with common terms
	Allocate to	Overview all the elements
	Architecture	Specify all the elements

Manage

If necessary, the perspective identified can be decomposed into a set of detailed perspectives.

Perspective

Project

Manager

4. Define PQC for the QC

Define PQC (Pragmatic Quality Characteristic) from the Reference QC in accordance with the perspectives.

	Perspective		Reference QCs						PQCs	
Level 1	Level 2	Correct	Complete	Ranked for importance and/or stability	Unambiguo us	Verifiable	Traceable	Modifiable	ID	Name
Require	Conform to customer's needs	x							C1	Correspondence to goals
Manage	Manage all elements on the progress		X	X					C2	Coverability
Implement	Design by template				X	X			C 3	Template usage
	Design by standard description				X	X			C4	Standard description usage
	Use with common terms				X				C5	Definition of terms
Allocate to Architecture	Overview all the elements							X	C6	Listing with identifier
	Specify all the elements						Х	X	C 7	Identifiability
										Refined

NTTDATA

Quality

Design Process

RISDM defines six processes for designing Product, Quality, Reading Technique, and Report.

5. Select Inspection Point Set and Define Grading Method of Quality Score for PQC

NTTDATA

Reading Technique

□ Select meaningful PQCs to each element of the SRS.

Inspection Point Set

PQC			TOC of Standard SRS					
ID	Name		2.1 Goal of System	2.2 Business & Scope of System	2.3 Constraint	2.4 Term	•••	
C1	Correspondence to goals		X					
C2	Coverability		X	Х	X	Х		
C 3	Template usage		X	Х	X			
C4	Standard description usage			X				
C5	Preparation of glossary					Х		
C 6	Listing with identifier		X	Х	X			
C 7	Identifiability		X	Х	X	Х		

Inspection point "X" is an element of SRS where an inspection is needed.

Reading Technique

Generate a question for judging whether an SRS element meets the quality criterion in terms of the PQC.

PQC		Question Set				
ID	Name	Question Set				
C1	Correspondence to goals	Are business and system requirements corresponding project goals?	to the	3		
C2	Coverability	Are there elements of the project SRS corresponding elements of the standard SRS?	to the	54		
C3	Templates usage	Are artifacts described using the template which is so in the standard SRS?	elected	36		
C4	Standard description usage	Are artifacts described by the standard description we selected in the standard SRS?	hich is	6		
C5	Definition of terms	Are there glossaries of the project SRS created?		3		
C6	Listing with identifier	Are artifacts and certain elements of the artifact identifier and listed in the table?	given	48		
C7	Identifiability	Are artifact and certain elements of the artifact ide using identifier?	entified	46		
			Total	196		

Visualization of SRS Quality

- Quality Score is calculated in percent of the total scored points.
- Inspection report shows a distribution of the quality score.
- Report indicates the strength and weakness of the SRS

NTTDATA

Report

- 1. Background and Research Questions
- 2. Approach
- 3. Design Methodology (RISDM)
- **4. Practice and Evaluation**
- **5. Conclusions and Future Works**

Corporate-Wide Application

The RIS designed by the RISDM is widely used by more than 140 projects in NTT DATA.

NTTDaTa

RQ1: Is the PQC designed by the RISDM useful to predict risks of the subsequent development?

RQ2: Does the reading technique designed by the RISDM help inspectors to suggest practical advices for SRS improvement?

Purpose: To demonstrate PQC is effective to predict risks of the subsequent development.

Method: Correlation analysis between seven QSes of PQCs and CDR (Cost Difference Ratio).

Project Profile for Analyzing Cost Overrun

- Seven projects vary in domain, development type, and size in terms of number of pages of the SRS.
- The statistics include all the elements of PQC and cost of both estimated and actual in the subsequent processes.

ID	Domain	Development Type	No. of SRS pages
1	Financial	Extension & Replacement	545
2	Public	New	401
3	Manufacturing	New	666
4	Public	New	172
5	Financial	Extension & Replacement	145
6	Distributor	New	300
7	Service	New	71

Results: Strong negative correlation of both C2 (Coverability) and C7(Identifiability) with the CDR.

B. Effect of Improving the SRS by the Feedback

Purpose: To demonstrate how the inspection report helps requirements analysts to improve the project SRS. Method: Monitoring the changes of the quality scores of the SRS in terms of the PQC.

1.Introduction 100%

100.09

Project Profile for Analyzing PQC Improvement

NTTData

- Six projects differ in the domain, development type, and size in terms of the number of SRS pages.
- □ We monitored the changes of the PQCs of the revised SRSes.

ID	Domain	Development Type	No. of SRS Pages
Α	Financial	New	191
В	Manufacturing	New	289
С	Financial	Extension	550
D	Service	Replacement	343
Е	Financial	Replacement	415
F	Financial	New	267

Improvement of PQC – Total Score –

NTTData

Results: 4 projects significantly improve QS. 2 projects(C, D) do not significantly improve QS.

Improvement of PQC – C2 and C7 –

NTTDaTa

Results: All the project finally attained the average quality scores of C2(Coverability) and C7(Identifiability) over 60%.

- 1. Background and Research Questions
- 2. Approach
- 3. Design Methodology (RISDM)
- **4. Practice and Evaluation**
- **5. Conclusions and Future Works**

RQ1: Is the PQC designed by the RISDM useful to predict risks of the subsequent development?

Yes. We found the effectiveness of the PQC, C2 (Coverability) and C7(Identifiability), for risk prediction in terms of cost overrun.

RQ2: Does the reading technique designed by the RISDM help inspectors to suggest practical advices for SRS improvement?

Yes. We found the effectiveness of the report for decision making of the SRS improvement.

□Conclusions

- Proposed RISDM (Requirements Inspection System Design Methodology), a methodology for designing the RIS (Requirements Inspection System).
- Defined the PQC (Pragmatic Quality Characteristics) and the reading techniques (e.g., Inspection points and Question set) based on PBR(Perspective-Based Reading).
- Corporate-wide application of the RIS designed by the RISDM demonstrated the improvement of the SRS quality and prediction of the risk of successive development

□Future Works

✓ Plan to analyze of the impact of PQC of SRS to the cost, quality and delivery-time.

NTTDATA Global IT Innovator

Copyright © 2014 NTT DATA Corporation