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Legal Domain: Healthcare

§ Health Insurance Portability and Accountability Act 
(HIPAA) passed in 1996 

– Regulates security and privacy for healthcare organizations

– $25,000 fines per violation per year for non-criminal violations

– Amended by the HITECH Act in 2009 to address data 

breaches and increase enforcement actions

§ Recent Settlement Actions:


– Concentra Health Services – $1.7 Million (April 2014)

– New York and Presbyterian Hosptial – $3.3 Million (May 2014) 
– Columbia University Hospital – $1.5 Million (May 2014)
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Legal Ambiguity: a Critical 
Challenge for Requirements
§ Legal texts are often intentionally ambiguous. 

– Example: 
“make reasonable efforts to limit protected health 
information to the minimum necessary to accomplish the 
intended purpose of the use”  – HIPAA §164.502(b) 

– The word “reasonable” appears 61 times in HIPAA! 
§ Traditional approaches, such as disambiguation or 

removal, do not work for legal ambiguities. 
– Legal texts cannot easily be re-written 
– Legal stakeholders cannot easily be sought out for definitive 

clarification. 
– Requirements engineers must interpret ambiguities in legal 

texts!
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What is ambiguity?

§ ANSI/IEEE Standard 830-1993: a requirements 
specification is unambiguous only when each 
requirement has a single interpretation. 

§ Definitional Concerns: 
– Should a statement with no clear interpretation be considered 

ambiguous? 
– What constitutes a valid interpretation?  Who decides? 

§ No objective standard exists. 
– There is no “correct” identification or classification of ambiguity. 
– We do have relative standards: Does a group agree as a 

whole on an interpretation?
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Research Overview
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§ Case study of 18 students identifying and classifying 
ambiguity 
§ technologists 
§ policy analysts 

§ Using a taxonomy based on linguistics, software 
engineering, and legal understandings of ambiguity. 

§ Legal text: §170.302 of the HITECH Act. 
§ 23 paragraphs (104 lines) 
§ Meaningful Use Stage 1 Criteria for a certified EHR 

§ Tutorial introducing the taxonomy and study procedure 
§ 5 Research Questions
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A Taxonomy of Ambiguity

6

Lexical Syntactic Semantic Vagueness

Incompleteness Referential Other Unambiguous
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Lexical Ambiguity

§ Lexical ambiguity occurs when a word or phrase has 
multiple valid meanings. 

§ Examples: 
– Conversational: Melissa walked to the bank. 
– §170.302(d): Enable a user to electronically record, modify, 

and retrieve a patient’s active medication list as well as 
medication history for longitudinal care.
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Syntactic Ambiguity

§ Syntactic ambiguity occurs when a sequence of 
words has multiple valid grammatical parsings.  

§ Examples: 
– Conversational: I saw the man with the binoculars. 
– §170.302(f): Enable a user to electronically record, modify, 

and retrieve a patient’s vital signs… 
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Semantic Ambiguity

§ Semantic ambiguity occurs when a sentence has 
more than one interpretation based entirely on the 
surrounding context. 

§ Examples: 
– Conversational: Fred and Ethel are married. 
– §170.302(j): Enable a user to electronically compare two or 

more medication lists.
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Vagueness

§ Vagueness occurs when a term or statement admits 
borderline cases or relative interpretation. 

§ Examples:  
– Conversational: George is tall. 
– §170.302(h)(3): Electronically attribute, associate, or link a 

laboratory test result to a laboratory order or patient record.
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Incompleteness

§ Incompleteness occurs when a statement fails to 
provide enough information to have a single clear 
interpretation. 

§ Examples: 
– Conversational: Combine flour, eggs, and salt to make fresh 

pasta. 
– §170.302(a)(2): Provide certain users with the ability to adjust 

notifications provided for drug-drug and drug-allergy interaction 
checks.
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Referential Ambiguity

§ Referential ambiguity occurs when a word or phrase 
in a sentence cannot be said to have a clear 
reference. 

§ Examples: 
– Conversational: The boy told his father about the damage. 

He was very upset. 
– §170.302(n): For each meaningful use objective with a 

percentage-based measure, electronically record the 
numerator and denominator… 
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Per-paragraph Response Block
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Research Questions 1 to 3

1. Does the taxonomy provide adequate coverage of 
the ambiguities found in § 170.302? 

2. Do participants agree on the number and types of 
ambiguities they identify in § 170.302? 

3. Do participants agree on the number and types of 
intentional ambiguities they identify in § 170.302?
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Research Questions 4 and 5

4. Do participants agree on whether software 
engineers should be able to build software that 
complies with each paragraph of § 170.302? 

5. Does an identified ambiguity affect whether 
participants believe that software engineers should 
be able to build software that complies with each 
paragraph of § 170.302?
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Research Question Measures

§ Q1 Measures: (1) Use of each of the first six ambiguity 
types and (2) minimal use of the “Other” type. 

§ Q2 Measures: ICC for both number and type of 
ambiguities identified 

§ Q3 Measures: ICC for both number and type of 
intentional ambiguities identified 

§ Q4 Measures: Fleiss Kappa agreement on 
implementability of the paragraph. 

§ Q5 Measures: The percentage of paragraphs deemed 
unimplementable that contain identified ambiguities
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Q1: Taxonomy Coverage

§ Participants identified on average 33.47 ambiguities 
for the 23 paragraphs examined. 
– 50 minutes provided for the study 
– All participants finished before time was up 

§ Every ambiguity type was used. 
– Least frequent: Semantic (1.59 on average) 
– Most frequent: Vagueness (9.82 on average) 

§ The “Other” type was less common than the least 
common ambiguity classification we defined (0.82 on 
average). 

§ Result: Yes, the taxonomy provides adequate 
coverage.
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Q2: Number and Type 
agreement
§ Number agreement:  ICC: 0.316, indicating fair 

agreement on number (p < 0.001) 
§ Type agreement: 

– For 2 of the 23 paragraphs, the participants demonstrated 
near-universal agreement. 

– For the remaining 21, the participants demonstrated only slight 
agreement. 

– Overall Fleiss Kappa for type agreement: 0.0446, indicating 
slight agreement on type (p < 0.0029)
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Q3: Intentional Number and 
Type
§ Number: ICC 0.141, (p < 0.0001) 
§ Type: ICC 0.201 (p < 0.001) 
§ The Incompleteness category was a primary driver of 

type disagreement. 
§ Technologists identified significantly more ambiguities of this 

type. 
§ Removing Incompleteness, Type agreement ICC becomes 

0.39, indicating fair agreement (p < 0.0001) 
§ Result: Participants agreed less on intentional 

ambiguities than on total ambiguities.
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Ambiguities by Type and Intent



© 2006-2014 Aaron Massey et al., Georgia Institute of Technology

Q4: Implementability

§ All participants: Fleiss Kappa value of 0.0052, p < 
0.788 — not statistically significant. 

§ Technologists: Fleiss Kappa value of 0.0455, p < 
0.116 –– not statistically significant. 
!

§ Result: Participants agreement on 
implementability was not statistically significant.
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Q5: Ambiguity and 
Implementability
§ 89% of unimplementable paragraphs contained an 

ambiguity 
§ 48% of implementable paragraphs contained an 

ambiguity 
!

§ Result: Yes, ambiguity is more commonly 
identified in paragraphs deemed 
unimplementable. 
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Summary

§ In 50 minutes over 104 lines of legal text our 
participants identified 33.47 ambiguities on average 

§ The taxonomy provided reasonable coverage: 
97.5% of all ambiguities identified were classified as 
one of the six defined types 

§ Participants accepted paragraphs with unintentional 
ambiguity as implementable!
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Future Work

§ Participants did not exhibit strong agreement on the 
number and type of ambiguity. 
– 50 minute limit? 
– Better guidelines for the taxonomy? 

§ Additional case studies 
– More partipants 
– Different legal domains 
– Does identifying and classifying ambiguity prior to other legal 

requirements activities improve performance?
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